
Propagation of waves perpendicular to the magnetic field in a two-component warm plasma

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1972 J. Phys. A: Gen. Phys. 5 471

(http://iopscience.iop.org/0022-3689/5/3/017)

Download details:

IP Address: 171.66.16.73

The article was downloaded on 02/06/2010 at 04:36

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0022-3689/5/3
http://iopscience.iop.org/0022-3689
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A :  Gen. Phys., Vol. 5 ,  March 1972. Printed in Great Britain 

Propagation of waves perpendicular to the magnetic field 
in a two-component warm plasma 

S R SHARMA and T N BHATNAGAR 
Department of Physics, University of Rajasthan, Jaipur, India 

MS received 27 July 1970, in revised form 14 June 1971 

Abstract, Propagation of small amplitude waves perpendicular to the magnetic field in a 
two component magnetoactive, unbounded warm plasma having arbitrary mass ratio has 
been examined using Maxwell's equations for the electromagnetic field and the first three 
moment equations for each component. The full pressure tensor equation (neglecting the 
heat flow tensor) has been used and the effect of momentum and pressure relaxation mechan- 
isms has been included in the analysis. Dispersion relations for pure transverse waves are 
obtained and discussed in detail for both low and high frequency propagation. The effect 
of thermal motions and collisions is examined for transverse and coupled waves. It has been 
found that the pressure relaxation mechanism contributes significantly in the damping of 
oscillations at the harmonic cyclotron frequency. 

1. Introduction 

In a previous paper (Bhatnagar and Sharma 1970) we have investigated the propagation 
of waves in a two-component warm plasma along the external magnetic field, using the 
first three moment equations. In the present work we extend the analysis to waves 
propagating perpendicular to the magnetic field taken along the z direction. The dis- 
persion relations for pure transverse waves and coupled longitudinal-transverse oscil- 
lations propagating perpendicular to the magnetic field are derived and discussed in 
detail. Particular attention has been paid to the effect of thermal motions and collisions at 
the upper hybrid and the cyclotron harmonic frequency. The collisional damping of 
waves propagating at extremely low frequencies is also investigated. 

2. Linearization and derivation of dispersion relations 

After linearizing the basic equations (Bhatnagar and Sharma 1970) about the initial 
static state in the usual manner, we assume that the perturbed quantities vary as 

(2.1) 
where K is the propagation vector taken along the x direction and o is the propagation 
frequency. The perturbed number density, electric and magnetic fields are, respectively, 
given by 

f = f o  exp i(Kx -ot) 
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i o2 
K'(u\ -U;) - - T ( U >  - U;) 

C 

, 4nnoec2 
o ( w 2  - K 2 c 2 )  

E j  = 1 (2.3) 

, 4nn,ec bj  = 1 ~j l , , ,K(~k  -U:). (2.4) 
K 2 c 2  - CO 

Using the above relations, the components of the pressure tensor are given as follows : 

p: = KP,(aiu', +2iaiui + vieaiu; + 2vieaiu',) (2 .5 )  

(2.6) p12 = pi1  = KP, -2iaiu; +-u,-2vIea~u; +iv;,-u; 
A 

4 i i A 

where 

8 ~ , Q , S l ~ v ~ ~ v ~ , B  4 
+ A W 2  A W 2  

+- ('4,n;of - AiQfv:ivj,) 

4iQeQiB 4i 
+-(vLivje -oewi)+----(QZ,ZAiwi +Q~A,W, )  

AW AW2 

. AiQ,-Qiw,B Po = PE = PO = nkTo 
AW 

a; = 

x = (0, + Qe)(wi -ai) + VkiVle  A = AeAi + v ;~ \ '~~B '  

4QeQ;2, B =  1-- 
W Y = (0, - Qe)(wi + Qi) + &vie 

4Q,' i eB0 Q . = -  

2 = w(w+iv') 

e, l  ,,,e.ic A . = U  .-- e,i e , ]  wi,e 

w = WeOi+v; iV;e  

v '  = v ' . + v '  = w +ive,i + ivLi,ie ei le 

(2.9) 

(2.10) 
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Re = 3Z0, + 5iviwe(w + ivki) - 5vevbivfe 

Q' = 3iZ - 5v,(w + ivi,) - 5viwe. 

The pressure tensor components for the electron fluid can be obtained by interchang- 
ing 'i' and 'e' in subscript and superscript of the above relations, and changing Ri to 
-ae. 

Eliminating all the variables except uj, we obtain two sets of independent equations, 
one of which is given by 

where 

K2c: oi-Qi o i + R i  A , ,  = 1-se- -  - 
2 w [  x +-) Y 

A,, = se.-- 

A2,  = S'-- -+- ivieK2cz 1 
2 0  (x :) 

in which 
2 

Wpe,pi 1Vei,ie 

PO c 2 .  = - 
nome*i 

"" = 
-KZc2 

e,1 

The other equation is given by 

Lj,uq -I- Lj2uq + L j 3 4  + Lj4UL = 0 
where j = 1 ,2 ,3 ,4  and 

vi ai K2czvr ai 2K2$ LZ2 = -- le 3 le 4 
L,, = 

w2 w 

(2.11) 

(2.12) 

K2c: Ai iR, 2K2c,2 
W O  o A  

L3, = 1-s=--- L31 = -- +- iag 
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2K’~;v:~ 
a4 

0 
L33 = 

K2c: A ,  in, 2K2cz 
0 0 w A  

L,, = 1 -y-- - L,, = -+- ia; 

with 
* 2  2 ’  Ope,pi = (ljpr.p, -- lcorc,,,c. 

Equation (2.11 ) describes the propagation of 3 pure transverse wave in Which t he  
perturbed motion is along the direction of the external magnetic field. Equation (2.121 
governs coupled longitudinal-transverse oscillations which are confined to the plane 
perpendicular to the magnetic field. It will be noted that the coupling is affected not 
only by the external magnetic field but also by the thermal motions. This additional 
coupling between the two types of oscillations due to thermal motions vanishes in the 
case when the selfrelaxation frequencies tend to infinity. 

3. Transverse waves 

The dispersion relation of the pure transverse waves propagating perpendicular to the 
magnetic field as obtained from equation (2.11) is given by 

.. (3.1 1 ~ o ; , { K ~ c f B ’ -  c~ ( l  +m)A’I w2 - K2c2 = , 

iv,,{K2cfB’-u(1 + m ) A ’ }  - A ‘ 0 2  - K4c2c; W + K2wD(c?o, +(.:CO,) 

If we put mi = x and vi = v,, = vi, = vk, = 0 in equation (3.1) we obtain the relation 
given by Sharma (1969). Neglecting all collisions, we get the relation obtained by Jaggi 
(1962) for the corresponding case of isotropic pressure. 

Assuming K2Sf(1 +m) << 102 - Q , ” l ,  lo2 -Qzl and neglecting collisions and the term 
containing S:Sz or S: equation (3.1) yields the expression for the refractive index n 

where 

gi = - ct,i and U,’ = w&+wii 
C2 
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It is seen that the wave propagates only when W’ > 0:. It is also apparent from the 
dispersion relation that the external magnetic field affects wave propagation only 
through thermal motions of the electrons and ions. However, as the magnetic field 
becomes extremely large the contribution of thermal effects also approaches zero and 
the wave propagates with refractive index n given by the usual formula 

(3.3) 

Equation (3.2) shows that the thermal motions tend to decrease the value of n2 when 

Qi or where w > Re. 

For other values of propagation frequencies the value of n’ is somewhat increased by 

Ifon the other hand the magnetic field approaches zero, the refractive index is given by 
the thermal motions. 

(3.4) 

For high frequency propagation equation (3.1) can be simplified. Retaining only first 
order terms in collision frequencies we have 

(1 + m - 2s:) U:, S2(3v + 4v’) - 2 ( 1 +  m)(v + v’) -- 
- 1 -  F -+i[ 0’ F 

K’c’ 
0’ 

where 

F = s,2s:-S,2(1+m)+l 

G = (v + v’)(F + 1) + vei( 1 + m - 2 m S 3  - Sz(vi + vi, + mv, + mvLi). 

Neglecting higher order thermal corrections relation (3.5) gives 

K’c’ ,’ = - 
0’ 

= 1 - T {  Wie 1 +m+S,2(1+ m’)} +i[vei(1 + m)’ +~ ,2{2v , ,  
0 

Wie 

w3 
x (1 + m + m2 + m3)+ v, + + m) + m2vi + vf,(m+ m’)}] x -. 

(3.6) 
It is apparent from equation (3.6) that the thermal motions tend to decrease the value 
of n’. The contribution of the pressure relaxation mechanism in the damping of the wave 
is much smaller as compared to that of the momentum relaxation mechanism. It is also 
seen that the magnetic field does not play any role for high frequency propagation. 

4. Coupled waves 

The dispersion relation (2.12) can be expanded to obtain a polynomial equation in K’ 
which is difficult to solve by simple algebraic methods. Assuming v, = vi + CL) it gives 
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a dispersion relation for a lossy two-component plasma which maintains an isotropic 
pressure. For the lossless case it reduces to the dispersion relation obtained by Seshadri 
(1965). 

Considering equation (2.12) for the case of an electron plasma 

(m, = =c, 11, = v , ~  = = 0 and iti = U; = 0) 

we get the following dispersion relation : 

where 

w 5wve 40R,2 
w e  3we(w + ivLi) we(wf - 4SZ:)' 

y = 3-+i  + (4.2) 

As pointed out by Sharma (1969) y may be interpreted as the effective value of the 
ratio of the two specific heats for the electron gas. Equation (4.2) differs from his expres- 
sions in the definition of we in that here it includes the contribution from the collisions 
with the stationary ions as well. 

Assuming w 2  << K 2 c 2  and mie < w 2  equation (4.1) simplifies to 

ivei  K2cZue i 1+(:i-w(w:-4n:) 
R ,? (w%-~Q:+~K~c : )~  = (u,"-4Re) 

x (w2 - - K2c:y) .  (4.3) 

If thermal motions are neglected equation (4.3) admits two solutions 

0: = 4n: 

and 

w2 = w,.,'+n: 1+- . i i:il-l 
(4.4) 

(4.5) 

Equation (4.4) corresponds to damped oscillations at w = 20,  and equation (4.5) is 
the relation for damped upper hybrid resonance oscillations. It may be noted that the 
effective frequency for selfcollisions is mainly responsible for the damping of oscillations 
at w = 2Re, whereas upper hybrid frequency oscillations suffer damping primarily 
because of the momentum relaxation mechanism. 

Considering the correction (assuming K2c:  << Q:, mie)  due to thermal motions on 
the above modes, equation (4.4) using equation (4.3) becomes 

(4.6) 
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The dispersion relation (4.5) in the presence of thermal motions becomes 

o2 = wz:+R,’( l+:)-’+3K2c:{l-i 4ve+9v:i - n: 
9W 322: - mie 

)]. (4.7) 
22,’(3ve + 3v:i - 12ve,) + o;,(7ve + 7Vbi - Vei )  

w( 3n: - mi,) 

It may be noted from (4.7) that selfcollisions cause damping only in the presence of 
thermal motions and that this damping is much smaller as compared to the contribution 
from the momentum relaxation mechanism. In case of a strong magnetic field 22,’ >> mie 
equation (4.7) reduces to 

, K2c:  
9 0  

- i o v e i  -1-(7ve+ 12vbi - 12vei). (4.8) 

An analysis of equation (2.12) in the limit v, + CO shows that for low frequency pro- 
pagation the medium behaves like a gas having an effective value of y (the ratio of two 
specific heats) as 

5 .5(Vi+Vf,) 3w 4wRf 
3 30, wi oi(w+4223 

y = -+1 +-+ 

Retaining only first order terms in w/wpi we get 

(4.9) 

(4.10) 

which goes to 10/3 as o -, 0. 
Assuming v, -, CO and retaining terms up to x( = w/wpi) and Sf( = cf/c2) we obtain 

n 4 A 4 + n 2 ~ , + ~ ,  = 0 (4.11) 

where 

A, = - ix{yjSf( l  + m + H 2 ) + p i S Z  d H 2 }  

A2  = ix(( l+m+H2X~pSf+p(1+m)+piS’  d + y S 2 8 )  

+,!?(I + m ) ( H 2  +ySz)} - {(I + m + H ~ ) ( H ~  +4fSz)} 

A .  = -ix(2p(1+ m ) ( l +  m+ H 2 ) }  + ( I +  m + H 2 ) 2  
in which 

vi + v;, p = %  H = 3  p. = - 
wpi Wpi o p i  

2 p 2 + H 2  1 
5 pi(pz + 4H2) 82 +4H2’ 

6 = -  d =  

In the limit x + 0 we obtain the dispersion relation for undamped magnetosonic waves 

K2c2 l+m+H2 -- - 
w2 H 2  +(lOS?/3) 

(4.12) 
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As the frequency increases, the wave shows damping due to collisions, and obeys the 
dispersion relation 

-- pHz[(l +m)’- (%OS?(l +m)/3}] 
(1 + m + H 2 ) { H 2  + (10S2/3))’ {l + i (  

K 2 c 2  l + m + H 2  
- 

w2 HZ + (10S?/3) 

4S?HZ(P? + H 2 )  
3pi(j32 +4HZ){H2+(10S?/3)).2 + (4.13) 

The second term vanish as v ,  + cc,. The first term in parentheses gives the contribu- 
tion only from the momentum relaxation mechanism and the second term arises because 
of the pressure relaxations. It is apparent from equation (4.13) that the damping is 
caused primarily because of the momentum relaxation mechanism and not by the pres- 
sure rclaxation mechanism. 
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